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Dynamics of current-driven phase-slip centers in superconducting strips
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Phase-slip centers/lines and hot spots are the main mechanisms for dissipation in current-carrying
superconducting thin films. The pulsed-current method has recently been shown to be an effective tool in studying
the dynamics of phase-slip centers and their evolution to hot spots. We use the time-dependent Ginzburg-Landau
theory in the study of the dynamics of the superconducting condensate in superconducting strips under external
current and zero external magnetic field. We show that both the flux-flow state (i.e., slow-moving vortices) and
the phase-slip line state (i.e., fast-moving vortices) are dynamically stable dissipative units with temperature
smaller than the critical one, whereas hot spots, which are localized normal regions where the local temperature
exceeds the critical value, expand in time, resulting ultimately in a complete destruction of the condensate.
The response time of the system to abrupt switching on of the overcritical current decreases with increasing both
the value of the current (at all temperatures) and temperature (for a given value of the applied current). Our results
are in good qualitative agreement with experiments we have conducted on Nb thin strips.
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I. INTRODUCTION

It is known that the resistive state of current-carrying
(quasi-)one-dimensional superconductors is characterized by
phase-slip centers (PSCs), where oscillations of the order
parameter allow the phase to relax by quanta of 2π [1,2]. PSCs
result in the formation of pronounced steps in both voltage
vs temperature [3] and current-voltage characteristics [4,5]
of narrow superconducting strips with transverse dimensions
of the order of the superconducting coherence length ξ .
For superconducting samples with lateral dimensions larger
than ξ , PSCs can be generalized to phase-slip lines with
almost uniform suppression of the order parameter along the
sample [6]. The oscillations of the order parameter may also
occur in the form of propagating waves carrying the zero of
the order parameter across the sample. Such waves (named
kinematic vortices) have been discovered in numerical sim-
ulations [7,8] and experimental evidence for the existence of
such kinematic vortices was reported in Ref. [9]. These vortices
move with velocity [9] vkv ≈ 105 m/s, which is much larger
than the maximal measured speed of Abrikosov vortices [10]
vav ≈ 103 m/s. Because of their very high velocity kinematic
vortices do not retain their circular structure [7,8], leading to
a rearrangement of the vortex lattice in the system [11].

Another mechanism for the resistive state of current-
carrying superconductors is the formation of hot spots
(HSs) [12], where the local temperature exceeds the critical
value, suppressing the superconducting condensate com-
pletely. It is believed that the PSC regime is confined to
a small temperature range in the vicinity of the transition
temperature Tc [3,5] and that the HS mechanism dominates
at lower temperatures [12]. However, recent studies imple-
menting the pulsed-current technique revealed that hot spots
never form unless PSCs have first been nucleated [13–16].

*Present address: Qatar Environment and Energy Research Institute,
Doha, Qatar.

This experimental technique has been shown to be an effective
tool in the study of the evolution of the resistive state
in current-driven superconductors and furthermore it has a
number of advantages over conventional techniques such as
multiprobe voltage measurements [17], laser imaging [9], and
radio-frequency synchronization [5,18].

In this work we study the dynamics of the superconducting
condensate in superconducting strips under abrupt switching
on of dc current using the time-dependent Ginzburg-Landau
(TDGL) theory. We find that the resistive state in such
current-carrying superconducting samples is characterized by
either dynamically stable (slow or fast) moving vortices or
expanding HS depending on the external condition (e.g.,
temperature and current). The flux-flow state (i.e., slow motion
of vortices) and the phase-slip state (i.e., fast-moving vortices)
are characterized by a saturating output voltage, whereas the
HS state results in a monotonic increase of the output signal as a
function of time. We confirm recent experimental findings [13]
that the phase-slip state is always proceeded by the HS state.
The response time of the superconducting condensate to the
applied current pulse is studied as a function of temperature,
the applied current, and the sample size.

II. THEORETICAL FORMALISM

As model system we consider a superconducting strip with
computational unit cell of lateral dimensions L and w. The
thickness d is much smaller than the coherence length ξ and the
penetration depth λ (see Fig. 1). Current is applied along the x

direction. For this system we solved numerically the following
TDGL equations in the zero electric potential gauge [19]:
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= Re[ψ∗(−i∇ − A)ψ] − κ2rot rotA. (2)
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FIG. 1. (Color online) The model system: a superconducting slab
(width w and with periodic boundary condition in the x direction)
under applied dc current I . A contour plot of the superconducting
condensate is superimposed on top of the sample with the direction
of moving vortices/antivortices indicated by white/black arrows.

In these equations, we express the length in units of the
coherence length ξ and the vector potential is scaled to
	0/(2πξ ) (where 	0 is the magnetic flux quantum). Time is in
units of the Ginzburg-Landau relaxation time t0 = 4πλ2/c2ρn

(ρn is the normal-state resistivity), the voltage is in units
of V0 = c	0ρn/8π2λξ , and the current density is measured
in j0 = c	0/8π2λ2ξ . The parameters u and γ , which are
a measure of the different relaxation times, are taken as
u = 5.79 and γ = 10 [19]. The numerical results are obtained
for κ = 10. The infinite strip is implemented through periodic
boundary conditions ψ(x,y) = ψ(x,y + L) and A(x,y) =
A(x,y + L) in the y direction. The superconducting-vacuum
boundary condition (∇ − iA)ψ |x=0,w is used in the x direction.
Current is applied by taking the following boundary condi-
tion for the vector potential in the x direction, rotA|z(x =
0,w) = H ± HI , where H is the applied magnetic field
(zero in our case) and HI = 2πI/c is the magnetic field
induced by the current I . Note that in Eqs. (1) and (2) the
screening of the magnetic field is neglected which is valid
for the samples with width w much smaller than the Pearl
length � = 2λ/d or for samples infinite in the z direction.
These coupled nonlinear differential equations are solved
self-consistently in a zero electrostatic potential gauge [20],
which was recently shown to be very effective in studying
the dynamics of superconducting vortices [11]. We also
conducted simulations where we couple the TDGL equations
with the heat transfer equation (see Ref. [21] for the details
of the numerical approach) and found that heating effects due
to the moving vortices result only in quantitative changes
in our findings. The temperature is indirectly included in
the calculations through ξ , λ, and Hc2, whose temperature
dependencies are given by ξ (T ) = ξ (0)/

√
1 − T/Tc, λ(T ) =

λ(0)/
√

1 − T/Tc, and Hc2(T ) = Hc2(0)(1 − T/Tc), respec-
tively, where Tc is the superconducting transition temperature.

III. I-V CHARACTERISTICS

As a representative example, we consider a superconduct-
ing strip with period L = 1 μm for different values of the
width w. Zero-temperature coherence length is taken to be

0 | |
max

2

FIG. 2. (Color online) Time-averaged voltage vs current-density
(I-V) characteristics of the sample with width w = 1 μm (a) and
w = 3 μm (b) at temperatures T = 0.92Tc (solid black curve) and
T = 0.98Tc (dashed red curve). The length of the computational unit
cell is L = 1 μm and the GL parameter is κ = 10. Inset in (b) shows
the lower part of the I-V curve. Panels 1–7 show snapshots of the
Cooper-pair density |ψ |2 (red/blue corresponds to largest/zero |ψ |2)
for current values indicated on the I-V curves. Black square in panel
3 shows the annihilation region of a vortex-antivortex pair and black
circles in panel 4 indicate the positions of a fast-moving vortex (on
top) and an antivortex (bottom).

ξ (0) = 10 nm, which is the typical value for the Nb thin
films (see, e.g., Ref. [22]). To investigate the response of the
system to an external dc current, we first calculated the I-V
characteristics of the sample, which are shown in Fig. 2 for two
values of the width w and temperature. Since the voltage signal
in our system is a time-dependent variable, we average the
voltage over a time interval much larger than the characteristic
voltage variation in order to construct the I-V characteristics.
For smaller systems [Fig. 2(a)] the zero resistance of the
sample is maintained up to a threshold current jc [see point 1
and panel 1 in Fig. 2(a)], above which the system goes into the
resistive state with a finite jump in the output voltage [point 2 in
Fig. 2(a)]. This resistive state is characterized by fast-moving
vortices [7,8,23,24]. With increasing temperature the system
transits from the Meissner state directly into the normal state
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[see dashed curve in Fig. 2(a)] and no resistive state is observed
during the current increase.

Figure 2(b) shows the I-V characteristics of the sample
with w = 3 μm. At lower temperatures, dissipation first
arises due to the periodic nucleation and annihilation of
slow-moving (Abrikosov) vortex-antivortex pairs in the center
of the sample as shown in panel 3, where we plotted a snapshot
of the Cooper-pair density. Since no external magnetic field
is present, those vortices are created periodically at the
opposite edges of the sample and annihilate in the middle
of the sample (highlighted by a black square in panel 3).
However, the voltage signal due to Abrikosov vortices is
much smaller than the one generated by the fast-moving
vortices [compare points 3 and 4 in Fig. 2(b)]. This signal
increases monotonically with applied current indicating a
larger nucleation rate of vortex-antivortex pairs. With increas-
ing applied current, the triangular vortex lattice gets distorted
and a rectangular lattice of vortices is observed (see panel
4) [11,23]. At larger current values, the vortices get deformed
and resemble the structure of fast-moving (kinematic) vortices
reported earlier [7,8]. The distortion is more pronounced in
the middle of the sample during the annihilation of vortex-
antivortex pairs, where the speeds of the vortices are largest [8].
This transition from a slow to fast moving vortex state results
in a noticeable jump in the I-V curve (see point 4). With further
increase of the applied current more channels with fast-moving
vortices appear in the system (see panel 5) before the entire
sample transits into the normal state. The critical current
density jc for the transition to the resistive state increases
with increasing temperature (dashed red curve). However,
the resistive state now is characterized only by fast-moving
vortices (see panel 6). For a given value of the current density,
the number of channels of fast-moving vortices (or the number
of phase-slip lines) decreases with temperature (compare
panels 5 and 7). The reason is that the effective size of the
sample in units of the characteristic length scales [i.e., ξ (T ) and
λ(T )] becomes smaller at high temperatures; thus it becomes
difficult for the sample to accommodate more phase-slip lines.
Note also that the unit for the voltage V0 = c	0ρn/8π2λξ

explicitly contains temperature. Therefore, the voltage signal
in real units is twice larger at T = 0.98Tc as compared to
the voltage measured at T = 0.9Tc. Thus, depending on the
dimensions of the sample and on external conditions (i.e.,
current and temperature) the resistive state is characterized
either by slow-moving Abrikosov vortices or fast-moving
vortices (or phase-slip lines). Because of the small size of
our sample, the formation of HSs leads to a transition to the
normal state of the whole system.

IV. VOLTAGE-TIME CHARACTERISTICS

Next, we study the response of our system to abrupt switch-
ing on of the applied current at zero external magnetic field, by
constructing voltage vs time characteristics of the sample. For
a given temperature and current, we started from the Meissner
state (i.e., |ψ | = 1) and applied a dc current pulse with duration
5000t0 at t = 10t0. During that time period, we recorded the
voltage vs time [V (t)] characteristics of the system together
with the evolution of the superconduction state. To show the
properties of the resistive state in response to the current we

FIG. 3. (Color online) Voltage vs time characteristics of the sam-
ple with L = 1 μm [L = 31.6ξ (T )] and w = 2 μm [w = 63.3ξ (T )]
at T = 0.9Tc and for different values of the applied current j · u(t)
[u(t) is Heaviside unit step function], which is switched on abruptly.
Panels 1–8 show snapshots of the Cooper-pair density |ψ |2 [for the
used scale see inset of Fig. 2(a)] at times indicated on the V (t) curves.
Inset in (b) shows a small time region of the V (t) curves.

plot in Fig. 3 V (t) curves of the sample with dimensions L = 1
μm and w = 2 μm at T = 0.9Tc for different values of the
applied current density. Snapshots of the Cooper-pair density
are also presented in order to show the time evolution of
the superconducting condensate. At smaller currents [curves
I and II in Fig. 3(a)] the output voltage oscillates in time
with well defined maxima. Each maximum in the V (t) curve
corresponds either to a vortex penetration (see panel 1) or an
annihilation of a vortex-antivortex pair (panel 2). However,
the voltage signal is an order of magnitude smaller than the
one we observed during the phase-slip line state [compare
curves I in Figs. 3(a) and 3(b)]. Note that at these small time
intervals, the dynamically stable state is not reached, where
one observes periodic oscillations in V (t) [22,25–29]. With
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FIG. 4. (Color online) V (t) curve of the sample with dimensions
L = 1 μm [L = 20ξ (T )] and w = 2 μm [w = 40ξ (T )] at T =
0.96Tc and for different values of the applied current-density. Inset
shows a snapshot of the Cooper-pair density |ψ |2 at time indicated
on the V (t) curve.

increasing applied current, phase-slip lines are formed (panels
3 and 4) and the output voltage increases considerably [see
curve I in Fig. 3(b)]. The average voltage signal saturates to
a certain value with small oscillations, which are due to the
penetration and/or annihilation of fast-moving vortices. With
further increasing the applied current the nucleation rate of
vortex-antivortex pairs, as well as the number of phase-slip
lines, increases resulting in an increase of the output voltage.
The voltage reaches a maxima just before the formation of
phase-slip lines (point 5), which are due to nonequilibrium
effects (see panel 5). However, the voltage curves saturate
when the phase-slip state is established [see curves III and IV
in Fig. 3(b)]. Please notice that the phase slip lines are not
necessarily straight, but they are parallel to each other. With
further increasing the applied current, the number and velocity
of vortex-antivortex pairs increases (panel 6) and local hot spot
areas appear, where the density of Cooper pairs reduces to zero.
Those hot spots are created near the sample edges and in the
middle of the sample (see panel 7), where the local velocity
of the vortices become maximal (see Fig. 8 of Ref. [8]). Once
created, the size of the hot spots increases in time (see panel
8) and the entire system becomes normal (point 8). For all the
values of applied current and temperature, as well as for all
considered sample sizes, the hot spots are unstable in time:
they expand until the entire system makes a transition to the
normal state.

Figure 4 shows the V (t) curves of the sample considered
in Fig. 3 but now for a higher temperature T = 0.96Tc for
different values of the current density. The resistive state here
is also characterized by phase-slip lines (or kinematic vortices)
at lower currents, which are stable in time (see the inset and
curves I and II) and by hot spots at larger currents (curves III
and IV), the formation of which results in the normal-state
transition of the whole system. However, the number of phase
slips is smaller than the one obtained at lower temperatures.
With further increasing temperature, superconductivity exists
only in the Meissner state and any motion of vortices results in
a complete destruction of superconductivity (not shown here).
This is because the sample dimensions become comparable to
the characteristic length scales.

FIG. 5. (Color online) (a), (b) Delay time �t as a function of
applied current at temperatures T = 0.92Tc (filled black circles) and
T = 0.98Tc (open red circles) for the samples with width w = 1 μm
(a) and w = 3 μm (b). (c) �t(I) curves of the samples with width
w = 1 μm (solid black circles), w = 2 μm (open red circles), and
w = 3 μm (solid blue squares) at T = 0.98Tc. The length of the
computational unit cell for all samples is L = 2 μm.

To summarize our findings on the response of supercon-
ducting strips to an external overcritical current, we plotted
in Fig. 5 the delay time in the formation of the resistive
state as a function of applied current for different width
of the sample at different temperatures. The delay time is
calculated as the difference between the switching time of
the current pulse and the characteristic time t∗, when the
slope of the V (t) curve becomes 1. t∗ is indicated by the
gray line in Fig. 4. The same method has been used to
extract the delay time from the experimental results [13,14].
In converting the delay time and the current into real units we
used the parameters of our Nb thin film samples (see Sec. V).
Namely, the coherence length is ξ (0) = 10 nm, penetration
depth is λ(0) = 500 nm, sample thickness is d = 80 nm,
and the normal-state resistivity ρ = 1.9 × 10−7 m. For the
parameters the time unit t0 is around 100 ps near the critical
temperature. It is seen from Fig. 5(a) that for all temperatures
the response time monotonically decreases with increasing
applied current. However, the transition to the resistive state
occurs at larger currents when temperature is lowered [notice
the break in the x axis in Figs. 5(a) and 5(b)]. For a given
value of the applied curve, the delay time becomes smaller
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at larger temperatures [compare solid black and open red
curves in Fig. 5(b)]. All these findings are in good qualitative
agreement with recent experiments on superconducting thin
films [13–16]. Figure 5(c) shows the response time of all three
investigated samples as a function of time at T = 0.98Tc. As
expected, the delay increases with increasing size of the sample
for given values of the applied current and temperature.

V. SAMPLE AND EXPERIMENTAL SETUP

As was shown in recent experiments in both low- and
high-temperature superconductors [13,14], the phase-slip state
initiates the hot-spot state at all temperatures. However,
the phase-slip state is not always nucleated in single-pulse
experiments: one observes the phase-slip state at temperatures
larger than a characteristic temperature T ∗, whereas the
hot-spot state is realized for T < T ∗ [13,14]. This is due
to the hysteretic behavior of superconductors. The phase-slip
state for T < T ∗ can be obtained only by implementing a
sequence of stepped bias currents. However, such experiments
are technologically very demanding and are not always acces-
sible. Therefore, to investigate both phase-slip and hot-spot
states, we studied several samples with the same dimensions,
but with different T ∗.

Niobium thin films grown by thermal co-evaporation were
manufactured by the Cryo-electronics company (USA) on
sapphire substrates with thickness of d = 80 nm and width
w = 5 μm. We have selected two sample with the same
transition temperatures (Tc = 8.7 K) and characteristic tem-
peratures T ∗ < 4.2 K (sample 1) and T ∗ > 4.2 K (sample 2).
The measurement consists of sending a single electrical pulse
of 450 ns duration and 10 kHz repetition through 50  coaxial
cables. When the sample is in the superconducting state, it has
no resistance. A delay line of 240 ns was used to separate
the incident voltage from the reflected one at the sample
stage. Incident and lateral voltages were measured using a
fast numerical oscilloscope. The bias current through the
sample was maintained constant by using a large resistance
in series Ra , while a resistor R‖ is mounted in shunt across
the combination Ra + sample. The equivalent impedance at
the line’s termination is 50 , and as a consequence the
reflected pulse vanishes. For an incident voltage Vi , the current
flowing through the strip in its superconducting state is I =
ITotR‖/(R‖ + Ra), where the circuit impedance Z = 50  and
ITot = Vi

Z
. The voltage response was recorded using a fast

oscilloscope through lateral electrodes with 187  connected
in series [Fig. 6(b)].

VI. PSC AND HS CREATED BY A CURRENT PULSE

The sample response to an electrical pulse was measured
by increasing the current pulse amplitude; different dissipative
modes occurred depending on the applied current and substrate
temperature Tb. When a current pulse I � Ic was sent to
the sample, a voltage response delay appeared with respect
to the current. Close to Tc, usually a flux flow (FF) response
starting at time t = 0 without any delay time td was observed
due to the motion of vortices. The FF voltage can be reduced
by lowering the substrate temperature. Another dissipative
mode occurred when the current exceeds the critical current;

FIG. 6. (Color online) (a) Voltage response of Nb sample 1 to
current pulses as a function of time at Tb = 4.2 K. The critical current
is Ic(4.2 K)= 72.2 mA. (b) Schematics of the experimental setup
(R‖ = R⊥ = 100 ). (c) PSC plateau voltage as a function of the
applied current. The superconducting excess current is Is = 40 mA.

a PSC is nucleated or a hot spot is formed [1,5,30]. Ic is
the minimum critical current to nucleate a PSC or to destroy
locally superconductivity.

A PSC can be distinguished from a hot spot by its voltage
response. Both modes are characterized by a noticeable
increase in voltage after a delay time td . The delay time td
is described by the following TDGL time [30]:

td (I/Ic) = τd

∫ 1

0

2f 4df

4
27

(
I
Ic

)2 − f 4 + f 6
. (3)

The PSC is characterized by a constant-in-time voltage,
whereas the hot spot shows a linear variation of the voltage as
a function of time [see the discussion related to Fig. 3(b)]. The
temperature inside the PSC is lower than the critical one (i.e.,
TPSC < Tc), while the temperature inside the hot spots exceeds
the critical value THS > Tc, destroying superconductivity
completely.

Figure 6(a) shows the V (t) curves of sample 1 at T = 4.2 K
for different values of the applied current. It is seen from
this figure that the response time of the sample to the abrupt
switching on of the current decreases with increasing current
value. Such a behavior of the delay time is also found in our
numerical simulations (see Fig. 5). After this characteristic
time, the voltage signal increases with time until it saturates
to a certain value. This phenomenon, already reported in low-
Tc [13] and high-Tc [14] superconductors, was related to the
formation of a PSC. Our numerical simulations also confirm
that (see Fig. 3 and corresponding discussions) the phase-slip
state is characterized by the saturation of the output voltage. In-
creasing the applied current results in an increase in the output
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FIG. 7. (Color online) Voltage versus time across Nb sample 2
for 5 current pulse amplitudes. The nonsaturation of V (t) after several
hundred ns indicate a slowly growing hot spot, in contrast to the PSCs
of Fig. 6. Note the gradual decrease of the delay time with the current,
similarly to the PSC delay times in Fig. 6.

voltage without expansion of the PSC’s length. The differential
resistance of the PSC is extracted from the linear dependence
of the PSC’s voltage vs the applied current. As was predicted
by the PSC theory [5], the extrapolated slope of VPSC vs IPSC
curve intercepts the current axis at the excess superconducting
excess current Is , which in our case equals 40 mA [see
Fig. 6(c)]. The PSC was interpreted as an oscillation of the
order parameter between 0 and 1. Therefore, the total current
is the sum of the two currents, the normal and superconducting
currents. The heat dissipated in this localized zone per unit
volume is ρI (I − Is)/(wd)2, where ρ and Is are respectively
the normal resistivity and the superconducting current [1].

Figure 7 shows the V (t) curves of sample 2 at T = 4.2 K for
different values of the applied current. Although this sample
has the same dimensions as sample 1, it shows a slightly
different response to the applied current. The output voltage
increases rapidly after the delay time which we relate to the
formation of PSCs. This process is followed by a slow variation
of the V (t) curve. By increasing the applied current the delay
time is reduced, the voltage increases, and the slope increases
corresponding to the expansion velocity of the HS along the
film. The normal spot expands and the current is purely normal.
The heat generated per unit volume is ρI 2/(wb)2 and escapes
towards the substrate. The transformation of the PSC to HS is
obvious from these results: the voltage curves do not saturate.
This is due to the fact that the bath temperature is larger
than T ∗. Similar behavior of V (t) is shown in Fig. 3(b) by

curves IV and V. On increasing the bath temperature Tb, a
more abrupt decrease of Ic as compared to that of Ih reverses
the situation, and thus places Ic(Tb) below Ih(Tb) [14], where
Ih is the minimum current, whose Joule effect is sufficient to
maintain a well defined normal spot above Tc.

By comparing theoretical (Figs. 3–5) and experimental
(Figs. 6 and 7) results, we find the following agreements
between theory and experiment: (i) the output voltage signal
saturates with time when the system is in the phase-slip state,
(ii) a monotonic increase of the voltage is observed when the
system is in the hot-spot state, and (iii) the response time of the
system decreases monotonically with temperature and applied
current. However, the theoretical estimate for the delay time is
smaller than the experimentally obtained value, which is due
to the smaller size of the sample studied theoretically.

VII. CONCLUSIONS

Using the time-dependent Ginzburg-Landau theory and
pulsed-current measurements, we studied the response of a
superconducting thin-film sample to abrupt switching on of
external current. Simulation results showed that depending
on the value of the applied current and/or temperature, the
resistive state is characterized by either (i) the flux-flow state,
(ii) the phase-slip state (or fast-moving vortices), or (iii) the
hot-spot state. The first two states are found to be dynamically
stable in time, whereas the hot-spot state is characterized by
the spread of the normal-state region until the whole sample
switches to the normal state. The latter regime results in a linear
increase of the output voltage with time. The characteristic
time for the transition to the resistive state (i.e., the delay
time) decreases by increasing the applied current at fixed
temperature or by increasing the temperature for a given value
of the applied current in agreement with experiment. Our
theoretical findings are in good qualitative agreement with
our experiments on Nb strips. The different dissipation modes
induced by the supercritical current were discriminated in the
experimental results, and the phase-slip and hot-spot regimes
were clearly identified.
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